1 de setembro de 2024

Matemática na Ciência de Dados

A matemática é a espinha dorsal da Ciência de Dados, ajudando a construir modelos robustos e interpretar resultados com precisão.

Estatística é essencial para entender distribuições de dados e fazer inferências. Por exemplo, ao analisar dados de satisfação do cliente, a estatística ajuda a identificar padrões e determinar se as mudanças feitas realmente impactaram a satisfação.

Álgebra Linear é usada para manipular dados em múltiplas dimensões. Isso é crucial para algoritmos de machine learning que lidam com grandes volumes de dados, como a redução de dimensionalidade em análises de grandes conjuntos de dados.

Teoria das Probabilidades permite prever a probabilidade de eventos futuros. Por exemplo, ao prever a demanda de um produto, a teoria das probabilidades ajuda a criar modelos de previsão mais precisos.

Aprofunde seus conhecimentos matemáticos com recursos gratuitos e aplique-os em projetos práticos para uma compreensão mais profunda.

Nenhum comentário:

Postar um comentário

Desafios e Oportunidades do 5G para o IoT

O 5G traz promessas de um futuro mais conectado e inteligente para o IoT, mas sua implementação não é isenta de desafios. Embora a velocidad...